NRF2 mitigates radiation-induced hematopoietic death.

نویسنده

  • John P Chute
چکیده

Fractionated, high-dose total body irradiation (TBI) is used therapeutically to myeloablate and immune suppress patients undergoing hematopoietic stem cell (HSC) transplantation. Acute exposure to ionizing radiation can have fatal effects on the hematopoietic and immune systems. Currently, therapies aimed at ameliorating ionizing radiation-associated toxicities are limited. In the February 2014 issue of the JCI, Kim and colleagues demonstrated that induction of nuclear factor erythroid 2-related factor 2 (NRF2) enhances HSC regeneration and increases survival following ionizing radiation exposure in mice. The results of this study suggest that NRF2 is a novel potential target for the development of therapeutics aimed at mitigating the toxicities of ionizing radiation exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation.

A nuclear disaster may result in exposure to potentially lethal doses of ionizing radiation (IR). Hematopoietic acute radiation syndrome (H-ARS) is characterized by severe myelosuppression, which increases the risk of infection, bleeding, and mortality. Here, we determined that activation of nuclear factor erythroid-2-related factor 2 (NRF2) signaling enhances hematopoietic stem progenitor cell...

متن کامل

Co-Activation of PKC-δ by CRIF1 Modulates Oxidative Stress in Bone Marrow Multipotent Mesenchymal Stromal Cells after Irradiation by Phosphorylating NRF2 Ser40

The high mortality associated with pancytopenia and multi-organ failure resulting from hematopoietic disorders of acute radiation syndrome (h-ARS) creates an urgent need for developing more effective treatment strategies. Here, we showed that bone marrow multipotent mesenchymal stromal cells (BMMSCs) effectively regulate oxidative stress following radiative injury, which might be on account of ...

متن کامل

Radioprotection by tempol: Studies on tissue antioxidant levels, hematopoietic and gastrointestinal systems, in mice whole body exposed to sub- lethal doses of gamma radiation

Background: Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in cell death. Wholebody exposure of mice to gamma radiation leads to diminution of tissue antioxidant defense systems increases the peroxidative damage to membrane lipids and damages the haematopoietic and gastrointestinal systems. Tempol (TPL), a cell membranep...

متن کامل

15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner

Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...

متن کامل

Pre-treatment with rapamycin protects hematopoiesis against radiation injury

Background: Protection of hematopoietic system has become a primary goal in the development of novel medical countermeasures against ionization radiation and radiotherapy. This study was to explore the role of rapamycin in normal tissues against radiation. Materials and Methods: Mice were pretreated with rapamycin by i.p. every other day for five times before 5 Gy or 8.5 Gy γ-ray whole bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 124 3  شماره 

صفحات  -

تاریخ انتشار 2014